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ABSTRACT 

Medium energy accelerators are often confronted with problems during transition en- 

ergy crossing, su~ch 5s longitudinal microwave instability and nonlinear synchrotron motion. 

These problems cm be avoided by an accelerator having a negative monxntum compaction 

factor. A modular method for designing a lattice with adjustable momentum compaction 

factor is presented. The phase advance of the basic flexible momentum compaction module 

can be adjusted to be an odd multiple of quarter betatron waves. We found that a lattice 

composed of such modules possesses excellent chromatic properties with smaller dispersions, 

smaller systematic stopband widths, and smaller sextupole distortion functions. The lat- 

est lattice without transition energy crossing for the Fermilab Main Injector is used for a 

comprehensive lattice study. 
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I. INTRODUCTION 

The deviation of the revolution period AT for an off-momentum particle at mo- 

mentum p0 + Ap relative to that of the synchronous (on-momentum) particle at 

momentum p,~ and revolution period To is given by 

where the factor 7 = LY - $ is called the phase slip factor and y is the Lorentz rela- 

tivistic factor for the off-momentum particle. In the above, a is the momentum com- 

paction factor, which measures the path length difference between the off-momentum 

particle and the on-momentum particle. When the beam particle is accelerated, the 

phase slip factor changes sign as y reaches yt = -&. This is the moment the particle 

crosses trmasition. 

There are many unfavorable effects on the particle motion around transition en- 

ergy. The momentum spread of a bunch around transition could become so large 

that it exceeds the available momentum aperture and beam loss could occur. There 

is little or no Landau damping against microwave instability near transition [2]. As a 

result, the bunch area grows due to the space-charge force of the beam as well as due 

to the wake forces created by the bunch inside the vacuum chamber. Particles with 

different momenta usually cross transition at different times leading to longitudinal 

phase space distortions and beam loss. However, if the momentum compaction factor 

is a negative number, there will not be any trausition energy crossing and all the 

above unfavorable effects will be avoided. 

To the lowest order in Ap/po, the momentum compaction factor is related to the 

horizontal momentum dispersion function D by 

1 

co / 
D(s) ds a=- __ 
P(S) ’ 

where p is the radius of curvature and s is measured along the reference closed orbit 

which has a total length Co. If only a matched module of the ring is considered, Co 

will be the length of the module. If each dipole at position i is approximated as a 

thin element having an average dispersion oi and bending angle Bi, the momentum 

compaction factor can be written as 

1 1 

O1 = T a c, ;=djp& c Diei 
Yt 
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The transition gamma will be an imaginary number if the momentum compaction 

factor 01 is less than zero. Thus the condition for an imaginary “it lattice is to have 

negative horizontal dispersion through most of the dipoles: xi DiO;]dipole < 0; i.e. 

D < 0 in most of the dipoles. 

There are many approaches for the design of an imaginary -n or high +n lat- 

tice, where transition energy crossing during acceleration can be avoided [338]. The 

harmonic appronch and the high-tune approach [3-81 create a systematic stopband 

to induce dispersion-wave oscillations resulting in a high -n. Such a method will 

give rise to a less controllable dispersion function and the dynamical aperture will 

therefore be smaller accordingly. On the other hand, the modular approach [6-81, 

introduced by Trbojevic et al [6], uses carefully matched negative dispersion func- 

tion inside dipoles in each module of the accelerator in order to achieve a negative 

momentum compaction factor, or an imaginary Yt. 

This report will present a detailed design strategy and a study of the beam dy- 

namics of the imaginary yt lattice. The method c,onsists of constructing a module 

made of two parts: (1) the FODO- (or DOFO-) cell part where the negative disper- 

sion function propagates through the dipoles and (2) the near-~ matching module 

[6-S] which connects the FODO (or DOFO) cells with a horizontal betatron phase 

advance C#I close to r. The negative values of the horizontal dispersion function in the 

dipole region determine the value of yt. Many advantages of our design, such as the 

control of the dispersion function, tunable yt value, dispersion-free straight sections, 

small systematic stopband widths, and small sextupole distortion functions will be 

demonstrated. 

The report is organized in the following way, The design method [6] is reviewed 

in Sec. II, where examples of lattices with different values of the ~~ are presented. In 

Sec. III, a complete design of an imaginary -n lattice for the Fermilab Main Injector is 

discussed. The compactness of the recent lattice is significantly improved compared 

to the two designs previously presented [6,7], due to both the smaller number and 

smaller sizes of the quadrupole magnets. This lattice provides excellent beam dynamic 

properties, which are analyzed in Sec. IV. We also discuss the chromaticity-correction 

scheme, the dependence on momentum, the tunability of the lattice, the betatron- 

function and the tune dependences on the gradient errors in the main quadrupoles, as 

well as the quadrupole misalignment sensitivity factors. An analysis of the distortion 

functions introduced by the chromaticity sextupoles is given in detail because of their 

vital influence on the dynamical aperture. Our special precautions taken in the lattice 
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design and in the positioning of the sextupoles lead to small tuneshift dependences on 

amplitude. As a result, no additional families of harmonic sextupoles are necessary. 

Tracking results show that the 35,000.turn survival dynamical aperture turns out to 

be much larger than the 40n mm-mr design requirement. Analytic analysis of the 

design strategy is given in the appendix. 
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II. REVIEW OF THE DESIGN METHOD 

A. Normalized Dispersion Function 

The dispersion function D satisfies a second-order inhomogeneous differential 

equation of motion, 

D” + K,(s)D = i 
P(S) ’ 

(2.1) 

where s is the distance measured along the reference orbit with local radius of curva- 

ture p(s), while 

1 dB *{z=1--2”, 
P2 Bp 83: (2.2) 

is the sum of the centrifugal focussing and the quadrupole focussing. Let us define 

the normalized coordinate system, 

‘D = v%sind, x=d7L ( = &D’ - &D = V%COS~, (2.3) 
I 

where J is called the dispersion action and 4 is identical to the horizontal Floquet 

betatron phase advance in the region where there is no dipole, D and D’ are the 

dispersion function and the derivative of the dispersion function with respect to s, 

respectively, while & and & are respectively the horizontal betatron amplitude func- 

tion and its derivative [I]. In the thin-element approximation, the function due to a 

pure bending dipole is therefore given by A< so AS and Ax = 0, with a contribution 

of &x0/C’s to the momentum compaction factor. Outside the dipole (p = co), the 

dispersion function satisfies the homogeneous equation, so that J is an invariant, with 

x and E satisfying x2 + l2 = 25, which is a circle. The t-x plot therefore advances 

by the phase angle 4. 

B. Design of the Basic Module 

To build a module with a negative momentum compaction factor, most of the 

dipoles should be within the third and fourth quadrants of the t-x normalized disper- 

sion space, where the horizontal dispersion (or the normalized dispersion x = D/a) 

has negative values. We demand a full symmetry of all Twiss functions within the 

module with respect to the vertical x axis. This condition is not a necessary con- 

straint. However, this symmetry does help to control the maximum and minimum 

of the dispersion function. At the same time, accurate matching of the betatron 
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functions can be made much easier with fewer number of variables. The first part of 

the module is made of a FODO (or DOFO) cell or cells with a starting point A, as 

presented in Fig. 1, which is located on the x axis of the t-x space. In the appendix, 

a general analytic analysis of the basic module is given. 

1. Maxima of the Positive and Negative Dispersion 

To achieve an imaginary +n, point A in Fig. 1, located at the center of two con- 

secutive FODO cells, should have a negative value on the x axis. FODO cells are 

adjoined with respect to point A with a reflective symmetry. The normalized disper- 

sion function of these FODO (or DOFO) cells fills up symmetrically the third and 

fourth quadrants of the t-2 space up to point B close to the positive [ axis and point 

D close to the negative [ axis. If there are no dipoles in the matching section, points 

B and D are joined by an arc with the center at the origin. This arc occupies most 

or all of the first and second quadrants of the t-2 space, and it is almost a semicircle 

with 180” horizontal betatron phase advance. This near-r insertion cuts the positive 

x axis at the highest value xmax denoted by point C, which is the reflective sym- 

metric point of the matching section. The maximum positive dispersion is therefore 

&xln.x, where /3=c is the horizontal betatron function at point C. Although this 

is not a necessary requirement, it is desirable to select this ncnr-K insertion as the 

low-beta insertion because of the following three reasons. First, the low-beta inser- 

tion just requires low-beta triplets or doublets so that a length of insertion can be 

shortened and the lattice would become more compact. Secondly, since the value of 

XlllU is predetermined by the invariant dispersion a,ction, smaller betatron function 

at point C would significantly lower the positive dispersion regardless of the type of 

insertion in the matching section. Thirdly, because of the rapid phase advance and 

the low value of the betatron function near point C, a small number of dipoles can 

be introduced here without significantly modifying the shape of the semicircle and 

increasing the positive contribution to the momentum compaction factor. 

On the other hand, if a FODO-cell structure is used for the near-~ insertion and 

an F quadrupole is placed at the center, the maximum positive dispersion will be 

large due to the large value of the betatron function pZc at the F quadrupole. This 

scheme was used in the design of the main driver of the I( factory at TRIUMF [3]. 

The horizontal dispersion at point A plays an essential role in determining the 

value of the momentum compaction factor. If the dispersion function has a large 

enough negative value so that most of the dispersion values in dipoles are negative, 



the momentum compaction factor will be negative. However, the maximum value 

of the dispersion function value of the lattice module is determined by the radius of 

the circle multiplied by 6, and this needs to be minimized also. A large negative 

dispersion at point A gives rise to a large dispersion action in the matching section; 

thus the dispersion function becomes large both positively and negatively. In general, 

if the dispersion is less negative at point A, the dispersion action in the matching 

section is also smaller (see Appendix). However, the phase advance required in the 

matching section decreases creating a larger value of the betatron amplitude function 

at the symmetry point C. The resulting positive dispersion function at point C 

becomes larger instead. 

2. Choice of F OT D Quadmpole at Symmetry Point 

From the symmetry point A of Fig. 1, there is a choice to start with the FODO 

cell or the DOFO cell. In our previous design [i’], point A was placed at the center 

of the D quadrupole from where a DOFO cell started to the right and left, each with 

a continuation of the quadrupole triplet DFD to provide the low-beta insertion. In 

the present design of the Main Injector lattice, in order to economize the number of 

elements, doublets are used in the low-beta insertion instead of triplets. Since it is 

important to make a large and fast change in the horizontal phase 4 of the order 

of n by lowering the horizontal betatron function, the doublet must start from an 

F quadrupole and be followed by the D quadrupole. If only one cell is used between 

point A and the doublet, it has to be a FODO cell, or with an F quadrupole at the 

symmetry point A. However, it is also possible to start from a D quadrupole, if one- 

and-a-half cells are used. This produces, however, much higher values of the positive 

dispersion for a given phase advance per cell. A general analytic analysis, presented 

in the appendix, shows that a basic module beginning with a FODO cell has superior 

beam dynamics properties. 

3. Dependewe of it on x,,,;,, 

A variation of yt is examined with respect to the value of ~~,,i,,. The basic module 

in an example shown below is made of two FODO cells, each of length 27.1600 m, 

and a symmetrical insertion consisting of two quadrupole doublets. The FODO cells 

are similar to the FODO cells of the relativistic heavy-ion collider (RHIC) lattice at 

Brookhaven. There is one dipole of length 9.45 m and bending angle 38.924 mr in 

each half-FODO cell. There is also a dipole of length 2.953 m and bending angle 
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12.163 mr located at the center of the symmetric insertion, (the same dipole in the 

zero-dispersion-suppression cell of the RHIC). Th e 1 iorizontal and vertical phase ad- 

vances of this module are close to 0.8 (11~ = 0.835 to 0.76, vy = 0.937 to 0.814) and 

the module length is close to 72 m. The maximum values of the betatron functions 

in the FODO cells are for pz = 52.825 m and /3, Y 44.5 m. Table I shows the de- 

pendence of the momentum compaction factor as a function of the initial dispersion 

function &in at point A for a lattice example where the horizontal and vertical phase 

advances in the FODO cells are fixed at 0.181 and 0.295, respectively. For the usual 

lattice made of the same matched FODO cells only, the dispersion at the F and D 

quadrupoles are DF = 2.529 m and DD = 1.289 m, respectively. Tables II and III 

show two more examples with different tunes of the FODO cell, while Table IV shows 

a module consisting of just three matched FODO cells. 

Table I shows that yr can be an imaginary number within a range between i23.275 

up to infinitely large imaginary numbers with the same range in the real domain. 

While the betatron functions do not change appreciably, the maximum and minimum 

values of the dispersion function have a wide range from the pair Dmin = -2.5000 m, 

D ma.% = +0.81343 m corresponding to yt = i23.3 to the pair D,,,i,, = -0.87700 m, 

D ,,,aX = +I.03966 m corresponding to +rt = i1007.8. Figure 2 shows the resulting yr 

values with various x,,,r,,. Each module of the above examples has almost identical 

length of 72 m and is made of identical magnets. In the fitting procedure all drifts 

and only one quadrupole length of the doublet were the variables. The only difference 

between these examples is the minimum of the dispersion function or xrnrn. 

The momentum compaction factor is plotted against the initial dispersion Dmin 

in Fig. 3. We see a linear relationship except for the three points at the far right 

which have the highest momentum compaction factors. It is clear from Eq. (1.2) 

that this linear relationship is exact when the module lengths are constant and when 

the dipole at the low-beta matching section is absent. The three points that deviate 

from linearity are found to have module lengths much different from the rest (less 

than 72 m). In the appendix, this linear relationship is derived analytically with the 

dipole at the low-beta omitted. The result is presented in Eq. (AlO) or (All), which 

is shown as dots in Fig. 3. We found that the momentum compaction factors of 

Table I (except for the three points on the right) agree with the analytical derivation 

extremely well, if the contribution of the low-beta dipole is removed. 

When the starting value of the xll,rl, % -0.125, as is presented in Fig. 2, the 

momentum compaction factor is very close to zero or y* becomes a large imaginary 
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value (one example is presented in Fig. 2 where +yt = i104.38) or a large real value (one 

case is presented in Fig. 2 where the or = 223.65). Any small changes of the tunes 

for these modules will produce a large chauge in yr. The modules where 7t has large 

values should not be seriously considered here. However, they are useful in the design 

of isochronous lattices. The module is exactly isochronous when Dmin = -0.885 m. 

The analytic formula in the appendix gives the prediction Drnin = -0.660 m. The 

discrepancy is again due to the positive contribution of the dipole at the low-beta 

matching section. Nevertheless, the analytic formula provides a very valuable guide 

in the design of the modules. 

The whole lattice with imaginary yt can be easily constructed by using a row 

of these basic modules. The optical functions of these modules are matched at the 

symmetry point A, and the number of modules depends only on the geometry of the 

ring required. A matched straight section with zero dispersion can also be designed 

by utilizing similar principles. 

4. Tune Selection 

A choice of the horizontal and vertical betatron tune within the FODO cells 

is quite different with respect to the regular FODO lattice. One of the important 

reasons for the choice of the 90” betatron phase for the conventional ring composing 

of FODO cells is the low value of the dispersion function [4]. Also the lattice will 

become achromatic for a set of four-FODO-cell combination, where the systematic 

stopbands are self-canceled. At a lower betatron phase, for example, the 60” cell, 

the peak value of the dispersion function almost doubles. The momentum-spread 

contribution to the beam size is directly proportional to the dispersion function while 

the betatron-oscillation contribution is proportional only to fi or fi. 

The rule [4] for the choice of the phase differenc.es within the FODO cells be- 

comes different in the case of the rnod~h~ imaginary ?t type of lattice design. The 

momentum-dispersion values, as it will be shown in an example, can be within the 

range of zti of the FODO-cell values by using a smaller phase advance in the FODO 

cells (see Appendix for analytic analysis). Three modules, made of the same magnetic 

elements but with different horizontal betatron phases within the FODO cells, were 

constructed to produce the same value of the imaginary yr - i45. The vertical tune 

within the FODO cells was kept the same at rjy = 0.244 in these three examples. 

Figure 4, shows a dependence of the minimum value of the dispersion function on 

the horizontal betatron tune within the FODO cells. The horizontal tunes in these 
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examples are r/, = 0.250, 0.190, and 0.145. As these examples show, the module 

with bet&on tune v, = 0.250 is no longer preferable compared with the other two 

modules, because, in order to provide or E i45, the horizontal dispersion ranges from 

D,,,in = -1.82 m t,o D,“,, = 0.773 m. If smaller values of the yt is required, we need 

to start this module at a still larger negative dispersion. It appears that the module 

with horizontal phase advance of 11~ = 0.145 or 52.2” provides a smaller range of 

dispersion. 

Table IV shows that the conventional matched FODO cell with v, = 0.25 and 

vY = 0.252 gives rise to the maximum dispersion function at D,,,,, = 1.428 m. On 

the other hand, the example of Table II shows that the dispersion function of the 

imaginary y* module lies within the limit of D,,,i,, = -0.815 m to D,,,,, = 0.819 m 

with a choice of v, = 0.142 in the FODO cell and achieving 7t = i57.3. Similarly, 

the dispersion function of the imaginary -yt lattice shown in Table III ranges within 

DIllill = -0.790 m to D,,, = 0.771 m, which are 0.56 or 0.54 times the D,,, = 1.428 m 

of the regular FODO-cell lattice. 

The displacement of the off-momentum particles has opposite signs within most 

of the dipoles. Particles with higher/lower momenta will travel through the in- 

side/outside parts of the dipoles as represented in Fig. 5. 
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III. FERMILAB MAIN INJECTOR LATTICE 

A complete Main Injector lattice with an imaginary 7t is constructed with the 

use of the basic module discussed in the previous section. This design represents 

a possible alternate solution to the 8 to 150 GeV Main Injector in Fermilab. The 

transition gamma was selected to be about or = i29.3 so that the absolute value of 

the momentum compaction factor would be roughly the same as in the conventional 

FODO-cell design. This ensures that all collective-instability thresholds would be a,t 

least as high as those of the conventional design. The lattice has to follow many 

geometrical constraints due to the limited site space. It also has to follow the shape 

of the tunnel of the existing FODO-cell-based design while the total length of the 

ring measures exactly 3319.4186 m. These constraints were fulfilled. Bowever, the 

less critical issue of the shape of the tunnel was not completely satisfied. This design 

uses 300 identical dipoles and tries to recycle as many old Main Ring quadrupoles as 

possible. There are two long-straight sections with zero dispersion, one of which is 

reserved for the rf, and six additional straight sections for injection and extraction 

purposes. 

A. Basic Module 

The basic module (BASIC) for the latest Fermilab Main Injector imaginary yt 

lattice has twelve dipoles within the two FODO cells (three per half cell) and one 

dipole in the low-beta insertion. Each FODO cell has a phase advance of 60”. The 

quadrupoles have a length of 0.988 m. The maximum gradients in the focussing and 

defocusing quadrupoles in the ring are 220.6 kG/m aud -216.8 kG/m, respectively. 

The maximum values of the horizontal and vertical betatron functions in the FODO 

cell are 77.39 m and 79.11 m, respectively. The length of the dipoles is 6.096 m 

given by the prototype maguet already built. The low-beta insertion cell, which is 

symmetric, joins the two FODO cells together. It consists of two doublets with an 

almost x phase advance, where the existing quadrupoles from the Fermilab Main Ring 

are used. The first F quadrupole in each doublet of the insertion shares the same 

function of the last focussiug quadrupole of the FODO cell. This not only eliminates 

one FODO quadrupole, but also shortens the length of the module, making it more 

compact. The quadrupoles in the doublet are made of the existing Fermilab Main 

Ring quadrupoles. The focussing quadrupoles are 2.1336 m and 1.31953 m long while 

the defocusing quadrupoles are 2.1336 m long. In the central part of the insertion, the 

horizontal bet&on function pr has a minimum value of 6.54 m at the center, while 
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the vertical betatron function & stays constant at 76.6 m. This arrangement leads 

to a minimum and maximum of the dispersion function of -2.700 m and $2.948 m, 

respectively. The total length of the basic module is 112.1 m with y* = i28.648. The 

normalized dispersion function for this basic module has been shown in Fig. 1. The 

betatron functions and dispersion function are shown in Fig. 6. 

B. Extraction-Injection Straights 

The extraction-injection straight sections are optimized for the extraction and 

injection purposes. Tl ley consist of essentially two basic modules: one with four 

missing dipoles in the FODO cells (EXTRI) for the kicker or electrostatic septum 

devices, and the other with six missing dipoles in the FODO cells (EXTR2) for the 

magnetic septum devices. The bet&on functions within the extraction and injection 

modules remain almost unchanged except for a slight difference in the positive part 

of the dispersion function. 

The free drift space, where extraction devices such as the magnetic septa would 

be located, is over 20 m, while the drift length for each electrostatic septum or kicker 

device for the Main Injector is about 12.5 m. The horizontal bet&on tune difference 

between the septum and the kicker position is AU= = 0.75. The values of the hori- 

zontal bet&on function at the positions of the kicker and magnetic septum are close 

to the maximum value. This optimizes conditions for injection and extraction. All 

quadrupoles within the extraction straights are the same as that of the basic module. 

The lengths of the two modules, which form the injection-extraction straight sections, 

are 108.5 m and 110.28 m, respectively. Both modules are of imaginary yt with values 

?t = i22.21 and 7t = i22.66, respectively. The bet&on and dispersion functions of 

the extraction-injection modules are presented in Fig. 7. 

C. Zero-Dispersion Straight 

The long zero-dispersion straight section (RFST) is designed with the missing- 

dipole scheme for zero-dispersion suppression and by using the same technique as for 

the basic imaginary yt module. Figure 8 represents the whole straight section in the 

normalized dispersion diagram. Agaiu, this module starts from the same point A and 

follows the path E, C, a,nd curves back to the origin 0, where both the dispersion and 

the slope of the dispersion function are equal to zero. There are three dipoles in the 

low-beta insertion and Fig. 8 shows that as expected they do not change the circular 

shape of the normalized dispersion function. It is clear that point B in this module is 
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much closer to the origin because of the two missing dipoles at the end of the FODO 

cell. At the origin 0, there is a long rf straight section with the zero dispersion 

- presented this time only as a point at the origin. To obtain the zero-dispersion 

straight, it is necessary to bring the normalized dispersion function from point A to 

the origin 0 via points B and C. The last dipole in the zero-dispersion-suppression 

cell should be placed close to the [ axis at the negative side so that its end would 

be at the origin 0. Figure 8 also shows that the two missing dipoles at the end of 

the FODO cell are necessary to provide for smaller radius of the closure circle. It 

is important to note that the same method has been successfully used at Fermilab 

for beam line matching designs [9]. The total length of a dispersion-free FODO cell 

is 80 m, which is available for the rf stations, while the length of the whole zero- 

dispersion module, with the zero-dispersion-suppression cells on both sides, is 329.22 

m. This module itself has a real value for the transition energy, or ^it = 41.15. 

The betatron and dispersion functions in this RFST module with zero dispersion are 

presented in Fig. 9. The quadrupoles in RFST dispersion-free modules are identical to 

the basic module except that the length of one of the quadrupoles should be 2.0443 m, 

which is 4.19% shorter than that of the standard 2.1336 m quadrupole. The old Main 

Ring 2.1336 m quadrupole equipped with a shunt can be a satisfactory substitute. 

All betatron functions and dispersion functions between the modules are perfectly 

matched at point A. Each module is also matched to a module of the same kind. 

The whole ring has twofold symmetry and is defined as 2[RFST, (EXTRl, EXTR2), 

5(BASIC), (EXTR2, EXTRl), BASIC, (EXTR2, EXTRl)]. These two dispersion 

free straight sections can be used for spin rotators (snakes) for maintaining spin 

polarization during polarized-proton acceleration. There are altogether 300 dipoles 

in this lattice and they are all of the same type. 

Properties of this imaginary yt lattice can be summarized as following. 

circumference C =3319.4186 m , 

horizontal tune V, =21.4197 , 

vertical tune vy = 11.1905 , 

transition gamma yt = i29.3 , 

maximum horizontal beta fiZ = 78 m , 

maximum vertical beta & = 79 m 
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IV. BEAM DYNAMICS OF THE MAIN INJECTOR LATTICE 

A lattice with properly matched betatron functions does not necessarily represent 

an acceptable solution. Properties such as (1) chromatic correction and perturbations, 

(2) sensitivity to errors, (3) tunability, (4) dynamical aperture, (5) spin-depolarizing 

resonance strength, etc. are also important. In this section, we shall examine these 

lattice properties for the Main Injector lattice. 

A. Dependence on Momentum 

The natural chromaticities of this imaginary yt example are, respectively, 

& = g = -39.18 a,ld [, = $$ = -19.98 , 

where 6 = Ap/po. The horizontal and vertical betatron base tunes are uZ = 21.42 and 

I/~ = 11.19, respectively. The chromaticity correction sextupoles consist of one SEXH, 

two SEXl’s, and two SEXV’s for each of the 24 modules except for the dispersion- 

free ones. The SEXH’s are located at the FODO F quadrupoles where the horizontal 

dispersion has the negative value of -2.6 m and pZ x 72.8 m, p, N 30.2 m. The 

SEXl’s are located at the F quadrupoles of the doublets where the dispersion is 

+1.8 m and /3= N 72.8 m, /& 4 30.2 m. The SEXV’s are located at the D quadrupoles 

of the doublets where the dispersion is +1.5 m and pZ N 11.4 m, /3, N 79.5 m. 

The integrated strengths of the sextupoles (B”!/Bp) to compensate for the natural 

chromaticities are found to be k,r = -0.0565 mm2 for the SEXH’s, -k,r for the SEXl’s, 

and !Q = -0.104 m -’ for the SEXV’s. This means that there are only two power 

supplies, one bus for the SEXH’s and SEXl’s and the other bus for the SEXV’s. The 

available drifts for the SEXH’s, SEXl’s, and SEXV’s are 1.5 111, 0.84 m, and 1.348 m, 

respectively. Because the chromaticities do not change sign during the acceleration 

cycle, lengths of 0.4 m for the SEXH and SEXl, and 0.5 m for the SEXV sextupoles 

will be quite adequate. 

The dependences of betatron functions on momentum of the chromaticity- 

compensated lattice were examined first. Two computer programs, the SYNCH and 

the MAD, were used to study the chromatic properties up to Ap/ps = *1.5%, al- 

though the estimated momentum spread in the future Main Injector should be less 

than rtO.Z%. Table V shows that the off-momentum closed orbit, the maxima of 

~7% and & f unc t ions, and dispersion functions do not depend significantly on mo- 

mentum. Figure 10 shows the dependences of the maximum relative deviations of 
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betatron functions on momentum deviation. Figure 11 shows the dependences of 

maximum and minimum dispersion on momentum deviation. 

We have demonstrated that chromatic properties of the imaginary ^it lattice are 

at least comparable to that of the FODO lattice. The maximum of the positive and 

negative values of the dispersion function in the imaginary yt lattice can be designed 

equal to $ or even i of the maximum value of the dispersion function of a conventional 

FODO lattice, as shown in Table I. Table VI shows another example to compare the 

maximum dispersion functions for the conventional FODO cells at rlr = 0.250 and 

vY = 0.252 with that of similar imaginary basic modules at different initial negative 

dispersion functions and resulting yt values. Note here that the maximum dispersion 

function is greatly reduced when the phase advance of the FODO cell in the basic 

module is around 60”. The magnitude of the dispersion function is however a trade-off 

between the dispersion function and the magnitude of the momentum compaction fac- 

tor. Due to a smaller maximum dispersion function for the imaginary yt lattices, the 

momentum aperture requirement is reduced. The corresponding dynamical aperture 

will be enhanced. 

B. Chromaticity and Distortion Function Analysis 

The chromaticity sextupoles represent the main source of nonlinearities. The 

imaginary ~~ lattice belongs to the group of lattices where a high focussing is used 

to provide low emittance and high brilliance in the new generation synchrotron light 

sources. The large natural chromaticity requires strong sextupole chromaticity com- 

pensation. This produces larger amplitude distortions or second-order-sextupole- 

induced tuneshifts with amplitude. 

The amplitude dependence of tuneshifts due to sextupoles (detuning) can be 

written as: 

Av, = n tz/r $ be&r , 

AvY = b tJn + c C,/T , (4.2) 

where t, and ty are the horizontal and vertical emittances, defined as amplitude 

squared divided by the betatron function. The detunings are [13] 

o= -& ?B,s+3BlS)k , 

b= -~p+s+B-s-2B13)~ , 
h 
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c= -&C(B+S-B-S+4BS)k 
k 

(4.3) 

and Sk = (~~;/‘&,) : 

k 

evaluated at positiou k of the sextupole having a length e -+ 0. The distortion 

functions &, &, B, B+ at location k are defined as [14]: 

&i; = 16ri; nv, F sklcos(l~=k’-lCl=kI--?rl/~) , 

&k = 16 si;3T,, c skc cos(h!‘zk, - &k~-37W’z,) , (4.6) 
2- k’ 

B, = 16si;Tv Csk,cOS(l~~k’-ll,rkI-?rV,) , (4.7) 
2- k’ 

B+& = 16si;rrv+ CSk1cos[211L,k~-~ykI~I~zk’-~2kj-~I/*] , (4.8) 
k’ 

where v=,~ are the horizontal aud vertical base tunes of the ring and v+ = 2v,fv,. 

The nonlinearity can be minimized by lowering the detunings or tuneshift- 

dependences on amplitude. One way to accomplish this is to minimize the distortion 

functions. The first thing to do is to minimize the strengths of the sextupoles by plac- 

ing them at the most advantageous positions. This imaginary yt lattice contaius a lot 

of low-beta insertions. The quadrupoles in the low-beta doublets are much stronger 

than the FODO quadrupoles and they are significant contributors to the chromatici- 

ties. In order to provide local chromaticity compensation with low-power sextupoles, 

these sextupoles must be placed as close to the low-beta doublets as possible. We 

follow this guideline and place one sextupole (SEXl) f m ran and another sextupole t 

(SEXV) after the low-beta doublet. In this way the strengths of the two sextupole 

buses required for chromaticity correction come out to be as low as k,f = ~0.0565 II-~ 

for SEXH and SEX1 aud ksd = -0.104 111~~ for SEXV. These strengths correspond to 

pole-tip fields of 1.77 and 3.25 kG, respectively, at 150 GeV for sextupoles of length 

20 cm aud aperture radius 5 cm. 

From Eqs. (4.5) to (4.8), it is easy to see that the distortion functions B1, B3, B, 

and & are actually cosine projections of the vectors B1, B3, B, and B* which rotate 

with phase angles &, 3$,,, &, and 2$, f $I=. On passing through a thin sextupole 

at location k, the cosine projections of the vectors remain continuous while the sine 
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projections jump by either iS’k or i,q,. Therefore, the sufficient conditions for the 

five distortion functions to vanish at a location can be written simply as: 

F -’ 
sk&w - 0 

F Sk’@=@ = 0 , 

(4.9) 

(4.10) 

-p,‘uikf = 0 , (4.11) 

(4.12) 

where the summation is over all sextupoles k’, whose phase angles S,k,, t/+,h,, and 

&kg = 2&k,+$,k, are measured downstream of the point of consideration. For a 

FODO-cell ring, the above conditions can be easily satisfied by choosing the phase 

advance per cell to be either 60” or 90” in both transverse planes. Such an idea can 

also be extended to our non-FODO ring. This ring has two superperiods. Between the 

two special zero-dispersion modules, there are 12 modules on each side, which consists 

of [(EXTRl, EXTR2), 5(BASIC), (EXTR2, EXTRl), BASIC, (EXTR2, EXTRl)]. 

Although there are three types of modules here, their Courant-Snyder parameters are 

similar. In the design, the horizontal and vertical phase advances for each of these 

three types of modules were chosen to be as close as possible to 270” (0.75) and 270”/2 

(0.75/2), respectively. Thus, the distortiou functions B1, B3, and B will be canceled 

for every four modules downstream. The phase advances of the modules were selected 

as listed in Table VII. 

Take I31 as au example. The contributions of the five sextupoles in a BASIC 

module as indicated in Fig. 12 give a vector of amplitude of 42.9 III-‘/* according 

to Eq. (4.9) or a RI of maximum value 2.76 n-l/* according to Eq. (4.5). The 

average phase advance per module is &%/27r = 0.747. Therefore, the cancellation 

is every four adjacent modules among the twelve tbat contain sextupoles. In fact, 

the cancellation is more than that. For every four adjacent modules, the first one is 

ca,nceled by the third and the second by the fourth. If the point of consideration is 

inside the first (fourth) module, contribution should come from only the first (second) 

and the third (fourth) modules. If the point of consideration is inside the second or 

third module, however, contribution will come from all the four modules. Fortunately, 
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the horizontal tune of the ring r,, = 21.4197 is not far from a half-integer, the vectors 

of neighboring modules in the summation in Eq. (4.8) will always be about 90” apart 

independent of whether one is downstream or upstream relative to the other. For 

example, if the point of consideration is at the end of the second module or the 

beginning of the third module, the contributions of the first and third modules are 

almost in the same direction, orthogonal to which are the contributions of the second 

and fourth modules. Therefore B1 can have an amplitude of 2.76 x 24 or 7.8 rn-‘/‘. 

At this location, the projection cosiue is about 5 giving B, x 5.5 mml/‘. 

Figure 13 shows a plot of & for half of the ring starting from the middle of 

the dispersionless rf straight. Since there is no sextupole in the rf straight, we see 

B1 oscillates sinusoidally according to the horizontal phase & just like the bet&on 

oscillation. Siuce the cancellation has not been perfect, B1 is different from zero here. 

In fact, the average phase advance per module is A1bz/2?r = 0.7472. Adding up the 

12 modules, we get instead of zero, 

Il,-pk:~~ = I;;!;;:1 = 0.148. (4.13) 

Thus, we expect the imperfect cancellation gives B, = 2.96x0.148 II-~/’ = 0.44 m-l/* 

for 12 modules. The other 12 modules give the same contribution but is separated 

by a phase of ?rv, or 104.45”. Thus the total contributiou amounts to 0.54 mm’/*, 

which is to be compared with 0.40 n-l/* in the plot of Fig. 13. At $,/27r = 0.88, 

we meet with the SEXH of the first of the 12 sextupole-loaded modules, and see B1 

bend over at an angle. Very soon, we are at the low-beta (centered at &/2r = 1.24), 

and the phase jumps rapidly showing a gap on the plot. The second module starts 

from $,/2n = 1.61 and has the low-beta phase-jump gap centered at gz/2n = 1.98. 

We reach the end of the second module at &/27r N 2.36, which is one of the points 

of consideration discussed in the previous paragraph. We see that B1 reaches a 

maximum of 6.2 m-‘I’, which is quite close to our crude estimation of 5.5 n1-1/2. We 

also see that B1 repeats itself every 4 modules as expected. 

The distortion function B rotates wit11 tiz. We therefore expect it to behave 

exactly the same as &. However, the siue projection of the vector B jumps by $3 

instead when passing through a sextupole. As a result, the vectors for the 5 sextupoles 

in module BASIC are different. As is shown in Fig. 14, the amplitude of vector sum 

of B is only 12.7, which is only 30% of that for B1. The plot of B in Fig. 15 does show 

a maximum of only 2.3 nl-1/2 mside a group of 4 modules. In the rf straight, however, 

the maximum B is 0.37 m-l/* which is not 30% of B,. The vector sum in Fig. 14 
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is small because of the large vectorial cancellation between the 5 sextupoles. This 

implies that the vector sum may differ by very much for different types of modules. 

In fact, for modules EXTRl and EXTR2, the vector sums have amplitudes 14.3 and 

13.6 me’/’ instead, which are 12% and 6% larger those for module BASIC. On the 

other hand, the largest difference for the vector sum is only 2.4% for B1. This explains 

the large value of B in the rf straight. 

The vector Bs rotates according to 3$,, which is the main difference from Br and 

B. The vector plot of Bs for the BASIC module is shown in Fig. 16 and the plot of 

Bs in Fig. 17. We see that Bs reaches a maximum of 17.9 II-‘/’ inside a group of 4 

modules and 2.7 m-1/2 in the rf straight. These values are considerably larger than 

those for Br. First, the vectorial sum for a module adds more constructively giving 

an amplitude of 61.9 m-‘/‘, which is 1.44 times that for Br. Second, the sin 3av, in 

the numerator of Eq. (4.6) gives a factor 1.33 larger than the sin ~rv, in Bi. Since the 

phase advance per module is now 3A& = 2.2416, the cancellation of the 12 modules 

will be worse; the factor in Eq. (4.13) b ecomes 0.445 instead or 3.0 times larger. 

Therefore, in the rf straight, (Bs),,1,, x (Bi),,,, x 1.44 x 1.33 x 3.0 = 2.3 n~--1/2, to 

be compared with 2.7 nml/’ in Fig. 17. 

The value of Bs inside a group of 4 modules can also be explained. Since 3v, = 

64.2591, the adjacent module upstream will have a relative phase of 3( I/~ - A&/27r) = 

62.0175. Thus for a point of consideration at the end of the second module and the 

beginning of the third, the relative phases for the four modules contributing to the 

summation of Eq. (4.10) will be, respectively, 59.77, 62.01, 0.00, and 2.24. In other 

words, the first module cancels the fourth and the contributions of the second and 

the third are nearly the same. Using the vector sum of 61.9 m-i/’ in Fig. 16 and 

Eq. (4.6), we obtain a value of 13.3 n-‘/’ for Bs, where we have added the 2.7 II-~/* 

we computed for the imperfection of cancellation of the whole ring. This is to be 

compared with the N 14 me’/’ of Fig. 17 at $=/2~r = 2.36. As is indicated in the 

fig”? (&)n,ax = 17.9 n-‘/* actually occurs before this point inside the low-beta 

insertion of the second module, which can also be estimated. 

The story is slightly different for the distortion function B+. Here, the average 

phase advance per module is A$+ = 2A$,, + Ati2 = 1.49. Thus, there will be 

cancellation for every two adjacent modules instead. In order words, the largest 

contribution to B+ comes from only two modules. For this reason, although the 

summation in Eq. (4.12) adds up to a vector of amplitude 29.5 nr-‘/’ for one module 

(Fig. 18), B+ has a maximum of only 2.2 m- ‘/’ Fig. 19). We observe that B+ has an ( 
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unusually large amplitude of 2.0 m- ‘1’ This is because A$+/27r = 1.4554 for module 

EXTRI which is far from 180”. Also the vector sums for the 3 types of modules differ 

by 12%. All these lead to the imperfect cancellation among the 12 modules. 

The distortion function B- rotates with a tune of v- = 2v,-v, = 0.9612 which 

is extremely slow. Therefore, cancellation between adjacent modules will not be 

possible. In the present arrangement, it also turns out that there is no cancellation 

among the five sextupoles within a module. However, due to the near integral value 

of v- and the two-fold symmetry of the ring, each sextupole in the first 12 modules 

is almost canceled by a complementary sextupole in the other 12 modules. Exact 

cancellation will occur if v- is exactly an integer. But this is not desirable since the 

performance will be exactly at a difference resonance. In our lattice, each module 

contributes a vector of length N 24 m-r/’ (Fig. 20) to the summation in Eq. (4.12) 

and, together with its complementary module on the other side of the ring, contributes 

a vector of length - 24 x 2~0s $ru- z 2.9 nr-‘/‘. Each of the 12 adjacent modules 

has almost the same phase advance 2& -&. Therefore, from Eq. (4.8), 15-I may 

reach the maximum value of 

24 x 2~0s $n- 
IB-I,,,,, X 12 X 16sillrrv_ = li3 Y 18 m--l” , 

sin :7ru- 
(4.14) 

which agrees well with the actual numerical computation plotted in Fig. 21. Note 

that this value is insensitive to how close the difference resonance is. 

Going through a low-beta insertion, tiz advances much faster than & so that $- 

actually decreases across the insertion. In the plot of B- versus G- in Fig. 21, we 

see that I?- starts fro111 N -18 In- ‘/’ at the center of the rf straight and increases 

to N 18 m-l/’ near the first low-beta doublet of the first module. Then the phase 

$- suddenly goes back to near zero and B- drops to --14 n-‘I* while crossing the 

low-beta region. Then, both 7/-/27r and B- advance again reaching 0.25 and almost 

zero, respectively, when the SEXH of the next module is reached. The phase advance 

per module is A$-/2n = -0.005, so that each module has roughly the same $- and 

the plot of B- has the shape of a butterfly. 

With this arrangement of sextupoles, the nonlinearity of the chromaticity sex- 

tupoles mostly cancels. From MAD and SYNCH, the tuneshift dependences on am- 

plitude were calculated to be 

“, = 21.41970 - 97.2c,/?r - 40.5t,/n ) 

vy = 11.19045 - 40.5cJn + 1.22t,/n , (4.15) 
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where the emittances t, and cY are in m. The detunings here are actually smaller than 

those of the existing FODO lattice of the Fermilab Main Injector by 50%. As a result, 

harmonic sextupoles are not required. In our previous design of the same imaginary 

7t lattice [7], these special precautions had not been taken, and the detunings [defined 

in Eq. (4.2)] turned out to be 

a = 4.82 x 10’ m-r , b = -1.56 x lo4 m-r , c = -7.49 x lo3 m-’ 

(4.16) 

which are very large. In order to maintain a reasonably large amplitude, a family of 

harmonic sextupoles was installed in the previous lattice to lower the nonlinearity; 

the three detunings then reduced to 4.43 x lo*, -2.81 x lo’, and 1.33 x lo3 m-r, which 

are still much larger than the detunings of the present design as given in Eq. (4.15). 

C. Half-Integer Stopbands and Betatron Beatings 

The horizontal or vertical off-momentum betatron beating amplitude [l] can be 

calculated according to 

W(s) 1 
-= 

P(s) 2 sin(2rvo) ! 
ds’AIc(s’)~(s’)cos[2I$(s)-?/qs’)l-2nvo] , (4.17) 

where AK is the gradient error, @ is the betatron amplitude function, 4 is the beta- 

tron phase, and v0 is the unperturbed or base hetatron tune of the accelerator ring. 

In terms of the phase 

4(s) = $$ = J,’ 2 ) (4.18) 

which ranges from zero to 2~ around one turn of the ring, and the integral 

Jp = dsp(s)AK(s)e+t”) , 
! 

(4.19) 

Eq. (4.18) can be Fourier expanded as 

npo 
@ 2 Jpe’p”(“) /3(s) = -lipzmco 4v,2-$ 

(4.20) 

We see that the above sum diverges when the tune is a half-integer. In fact, a lattice 

will be linearly unstable in a region where the tune is near to a half-integer. The 

stopband is given by 6~ = ]J,]/2 z where JJ = 2~s. For a systematic half-integer 

resonance, the gradient error is given by 

22 



AK(s) = -IiS + g,, $ , (4.21) 

where the first term is the variation of the quadrupole gradient due to momentum 

offset and the second term is the feed-down contribution from the sextupoles. 

Now, if the modules in our lattice are identical, each with a phase advance of 

27rv, the systematic stopband integral becomes 

Jp = J,” { 1 + e-i2wluo + e-~4v+o + . } ) (4.22) 

where J,” is the stopband integral for the first module, while the second and third 

terms inside the curly brackets are contributions from the second and third modules. 

For a module of phase advance 90” or an odd multiple of 90”, it is clear that the 

systematic stopband integral for adjacent modules will cancel each other at the har- 

monic p x 2~~. Similarly, if the phase advance of each module is 60”, the vector sum 

of three adjacent modules will cancel each other. 

As will be shown in the appendix for an imaginary 7t lattice with a FODO cell, 

the phase advance of a basic module (similarly for other modules) will be ir for a 

properly chosen initial dispersion value and the phase advance of the FODO cell. 

Thus, the stopband integral cancels for two adjacent modules. This is the concept 

of the half-integer stopband-compensation scheme [ll, 121 which was usually used for 

large colliders like RHIC, LEP, etc. In the case of smaller rings, such as synchrotron 

light sources, additional families of sextupoles were introduced. As was reported 

in Sec. IV A, the betatron function dependence on momentum of the chromaticity 

compensated lattice was too small to be seriously taken into consideration especially 

within the expected momentum range ~tO.2%. The betatron beating due to momen- 

tum for this lattice at the particle momentum offset of &0.2% was less than 1%. The 

cancellation of systematic stopband width plays an important role in the tunability of 

the lattice, where the betatron tune can be adjusted without distorting the betatron 

amplitudes. 

D. Tunability of the Lattice 

For a flexible lattice, the betatron tune should be adjustable to within fl unit 

without much impact on the performance. For the present lattice, the horizontal 

(vertical) tune was varied for f2 units while the vertical (horizontal) tune was kept 

constant. The starting tunes were t/Z = 21.42 and I/~ = 11.19. The results from 

the study of the betatron function dependence on the horizontal tune are presented 
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in Fig. 22. When the horizontal tune is away from the integer and in the region of 

V, > 21.1 and r/, < 21.8, the horizontal beam size (a) does not change by more 

than 2%. If the horizontal tune is lowered to the region 20.5 < 11, < 20.9 or raised 

to the region 22.1 < V, < 22.6, the horizontal beam size (a) does not change by 

more than 10%. The vertical beam size remains within a range of ~t2% when the 

horizontal tune 11~ changes within a range of f1.5 units. 

The beam-size dependence on the vertical tune is shown in Fig. 23. The vertical 

beam size does not change by more than 2% if the vertical tune avoids the integer 

values and is within the region of 11.05 < 11~ < 11.55. When the vertical tune is 

lowered from the operating tune of 11.2 down to 10.4 < vy < 10.95, the vertical beam 

size & mcreases up to 8%. The vertical beam size is above 18% when the vertical 

tune is above 12. The horizontal beam size & remains less than 1% for the vertical 

tune range of 10 < V, < 12.5. 

The designed lattice with imaginary -n, as well as the present Main Injector 

design based on the conventional FODO-cell structure, has twofold symmetry due 

to some special injection and extraction constraints. The integer-tune resonance of 

the betatron functions in the ring with the two-fold symmetry is to be expected 

[16]. (The systematic half-integer resonance in the accelerator with N superperiods 

are located at v = $N, N, :N, ” .) The horizontal dispersion showed a similar 

dependence on the horizontal tune as the horizontal betatron function. The dispersion 

function becomes large when the horizontal tune reaches the integer values [l]. This 

is expected, because the dispersion at location s is given by 

Jzmm 
PCS’) c+4? - MS) - h(s’)ll (4.23) 

All these results were obtained from SYNCH program calculations. It is possible to 

change the tunes by fl unit without noticeable changes in all betatron functions if 

the integer tunes are avoided. 

E. Misalignment Errors 

It is impossible to align all beam elements perfectly. Transverse misalignment 

errors can lead to offsets of the closed orbit, which must be corrected during operation. 

If all the misalignments are random, uncorrelated, and have a variance (2’) where 

z = z or y, it is easy to show that the closed-orbit offset z,Js) at location s has a 

variance given by 
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(2’ (s)) = (2) co P~icos[~YZ-l~Lli-~*(S)I1 (4.24) 

In the above B’ is the field gradient of the quadrupole and e its length, the summation 

runs over all the quadrupoles in the lattice, and the thin-lens approximation has been 

assumed. The computation was performed by reading a SYNCH output file, the 

(z&(s))‘s were computed at each quadrupole, and the maxima were recorded. We 

obtained the misalignment sensitivity factors: 

& = [ ‘w];ax = { :;I “0~~;;~;; (4.25) 

Since S, follows a Rayleigh distribution, there is a 98% probability that the closed- 

orbit offset will fall within 2S,. The sensitivity factors are about a factor of two less 

than those for the previous imaginary ^/t design [7]. There, the middle quadrupoles 

in the low-beta-insertion triplets are over 4 m in length and these quadrupoles alone 

contribute about 90% to the sensitivity factors. In our present design, only doublets 

are used in the low-beta insertions. In order to recycleold Main Ring quadrupoles, the 

focussing quadrupoles are composed of two pieces, 2.1336 m and 1.31953 m long, while 

the defocusing quadrupoles are 2.1336 m long. The weaker quadrupole strengths and 

the smaller number of quadrupoles reduced significantly the misalignment sensitivity 

factors. 

F. Dynamical Aperture Study 

The dynamical aperture was studied with multiturn tracking using the TEAPOT 

program [17]. The dipole multipoles in the $25.4 mm range were provided from the 

magnetic measurements of the Main Injector prototype dipoles. The vertical magnetic 

field in the plane of the ideal orbit has the harmonic expansion 

B= -'- iBz = Bo &,i t ;a,t)(z + iv)" , (4.26) 
n=o 

where & is the vertical bending field at the ideal orbit, b,,‘s (60 = 1) are called 

the normal multipole coefficients, and a,‘s are skew multipole coefficients, which we 

ignore in this analysis. Since the dipoles are not superconducting, only systematic 

errors are included, because random errors are supposed to be small, though not 

necessarily true in all cases. 
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The magnetic-field measuremeuts were accurate up to the distances of 25.4 mm. 

At the injection energy of 8.9 GeV, the sextupole in the dipoles was positive with 

62 = 0.0654 IX-* while the decapole contribution was b4 = 4.27 111~~. The multipoles 

were placed in the center of the dipoles as thin lenses. A particle was launched at the 

center of the dispersiouless rf straight with a certain horizontal displacement CC. The 

vertical displacement y was varied and the maximum recorded for a survival of 35,000 

turns or approximately 0.38 set of the injection. The iuitial angular displacements I’ 

and y’ were set at zero in all cases. Sometimes the initial y displacement was fixed 

while the 2 displacement was varied instead. In this way we scanned the whole z-y 

space and obtained the aperture plot shown in Fig. 24. The tracking had been done 

for particles with momentum offsets of 0.2% and 1.0%. Due to the small d&wings 

presented in Eq. (4.15), the aperture turns out to be fairly large. Even at a momentum 

offset of l.O%, the allowable normalized emittance is larger than 200~ mm-mr in both 

planes, while the required aperture is ouly 40~ mm-mr. 

The lattice was next tracked at 19 GeV when the eddy currents are supposed 

to have a maximum; the correspondiug multipoles at 25.4 mm are: bz = 0.561 n-*, 

b4 = 23.23 m-“, and & = 6677 n-s. The 35,000-turn survival apertures for 0.2% 

and 1.0% momentum offsets are shown in Fig. 25. Here the allowable normalized 

emittances are 200s mn-mi- and 500n *mwnir in the horizontal and vertical planes, 

respectively. 

We should poiut out that the apertures shown in both plots are not necessarily 

real. This is because the magnetic field was not presented correctly at distances over 

25.4 mm. Also the chromaticity sextupole settings for the tracking have been designed 

for complete chromaticity compensation. When the ring ruus at chromaticities dif- 

ferent from zero, the sextupole strengths will be different, and the aperture will be 

affected. Also synchrotron oscillation had not been included in the tracking. Never- 

theless, results from the Main Injector lattice presented in Figs. 24 and 25 illustrate 

that large apertures can be achieved in imaginary 7t lattice. 
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V. CONCLUSION 

In conclusion, we have reviewed methods of designing an accelerator or storage 

ring lattice with imaginary yt. Analytic formulas as well as numerical examples have 

been used to demonstrate the basic design principle of the imaginary -yt lattice, where 

the basic imaginary or modular structure has been exploited for easy construction. 

A basic module of the imaginary -yt lattice is made of two FODO cells matched by a 

reflective symmetric doublet-matching section. Analytic analysis and numerical ex- 

amples indicate that the dispersion and betatron amplitude matching can be achieved 

easily. 

We also proved analytically (in Appendix) that the phase advance of the module 

is determined by two parameters, the phase advance per cell in the FODO cell and 

the initial dispersion function at the focusing quadrupole. The magnitude of the 

momentum compaction factor is determined in turn by the initial dispersion value. 

With a proper choice of the dispersion value, the maximum bet&on functions and the 

maximumdispersion function are comparable with the similar lattice with FODO cells 

alone. With a proper choice of the phase advance in each module, the half-integer and 

third-order stopband widths can be minimized with excellent chromatic properties. 

We have also studied analytically the chromatic distortion functions due to chromatic 

sextupoles and demonstrated that excellent distortion function cancellation can be 

achieved without resorting to extra families of sextupoles. Therefore, the dynamical 

aperture achieved in the present imaginary 7t lattice is at least as large as that of the 

regular FODO cell lattice. 

A completed Fermilab Main Iujector lattice has been used to demonstrate the 

design principle. A zero-dispersion section can be constructed using the same princi- 

ple. The tunability of the lattice is found to be excellent due to the smallness of the 

systematic half-integer stopband. The tune can be changed without greatly exciting 

the [2v] harmonics. Thus, the betatron-function distortion can be minimized when 

the betatron tunes are changed. 

A major advantage of the imaginary -yt lattice is that transition crossing is avoided. 

Because the momentum compaction factor is negative, the longitudinal motion of 

beam particles is always below transition where the space-charge impedance does not 

cause microwave instability. The longitudinal phase space blowup and possible beam 

loss due to nonlinear synchrotron motion around the transition energy region can 

be avoided. It is important to note that the desired value of yt could be adjusted 

during the design procedure because the -n value depends on the average value of the 
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dispersion function through the dipoles. 

With the present design concept, there is no need for the dipoles with an opposite 

bend a,ngle [18] to cancel out the longer (shorter) path length of the higher- (lower-) 

momentum particles as in the regular FODO structure. In the imaginary or lattice, 

the horizontal offsets and their slopes at the dipoles were designed to provide for this 

cancellation. 

Applying the imaginary -yt design principle, a lattice with zero momentum con- 

paction factor, or the isochronous storage ring, can be designed by a proper choice 

of the dispersion function. Combining the choice of the phase advances per FODO 

cell, an isochronous storage ring can also be designed with excellent beam dynamics 

properties. 
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APPENDIX: THE BASIC MODULE 

The basic module of an accelerator lattice is usually made of FODO or DOFO 

cells. A basic module of the flexible y1 lattice is made of two to three FODO cells 

and a reflective symmetric doublet- or triplet-matching section. In this appendix, 

we examine the properties of the basic module with two FODO cells and a doublet 

matching cell configuration discussed in Sec. II B. 

The basic module can be expressed as 

M, { +QF B QIJ B $QF} Mr, {QF, 01 Qoz OZ} M, + refl. sym. beam line, 

(Al) 

where M&c are marker locations, Q’s are quadrupoles, O’s are drift spaces, and B's 

stand for dipoles. The horizontal betatron transfer matrix of the FODO cell is given 

by 

( 

cos p j3Fsinp DF(~-~0s~) 

M FODO = -&sinp cos p +$sinp , 

0 0 1 1 

where /I is the horizontal phase advance in the FODO cell. We have assumed symme- 

try in the Courant-Snyder parameters at the center of the focusing quadrupole, i.e., 

pF = 0 and L& = 0. 

In the thin-lens approximation with equal focusing and defocusing strengths, the 

Coumnt-Snyder parameters are given by 

.p LF 

sln if = v ’ 

pp=2LF(1 +sin+p) , 
sin p 

D 
F 

= L#(2+ sirrip) 

2sin2+fr ’ (A31 

where LF is the length of the half FODO cell, f is the focal length of quadrupoles in the 

FODO cell, and 0 is the bending angle of the dipole B. However it is worth pointing 

out that the applicability of Eq. (A2) is not limited to thin-lens approximation. 

In the normal FODO lattice, the dispersion function is assumed to be periodic in 

each FODO cell. In this case, the dispersion function at the center of the focusing 

quadrupole is DF with Db = 0. For an imaginary or lattice, the dispersion function 

at the beginning of the FODO cell is prescribed with a value D, with Dh = 0 in 

order to achieve the preferable yt value. Depending on the initial dispersion value at 

marker M,, the dispersion function at marker Mb is given by 
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Db=Dp-(DF-D,)cosp, D;= 
DF-D~ 

Pb 
snip, (A4) 

where ,L$ is the betatron amplitude function at marker Mb with ,!$ = /IF. of Eq. (As). 

In the matching section (assuming that there is no dipole or negligible dipole contri- 

bution to dispersion), the dispersion action is invariant, i.e., 

Here, C is the ratio of the desired dispersion at marker M,, to that in the usually 

matched FODO cell lattice, and Jp is the dispersion action for the regular FODO 

cell at the focusing quadrupole location. Figure 26 shows J~/JF as a function of C 

for various phase advances per cell. Note here that the ratio of the dispersion actions 

increases when the initial dispersion D, at marker Ma is chosen to be more negative. 

It is preferable to have a smaller dispersion action in the matching section in order 

to minimize the dispersion function of the module. One may like to conclude from 

Fig. 26 that a smaller phase advance in the FODO cell is preferred. However, it is 

worth pointing out that the dispersion action JF for a 45” phase advance FODO cell 

is about 7.9 times larger than that for a 90” phase advance. Thus, the phase advance 

in the FODO cell should be 60” or larger in order to achieve a small dispersion action 

in the matching section. 

The dispersion functions and other Courant-Snyder parameters are then matched 

at the symmetry point at marker MC with a doublet (or triplet). The betatron transfer 

matrix is given by 

M b-c = , 

where we have also assumed a symmetry condition at marker MC for the Courant- 

Snyder parameters, i.e., pi = 0 and p’c = 0. Here, @b and PC are the betatron 

amplitudes at, respectively, markers iM, and M,, while 11 is the betatron phase advance 

between markers A4b and MC. 

The required dispersion matching condition at marker MC is 0: = 0. Using 

Eq. (A4), we obtain then 
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tan $ = 
(l-C)sinp 

1 -(l-<)cos/l 

This means that the phase advance of the matching section is not a free parameter, 

but is determined completely by the initial dispersion value D, at marker M, and the 

phase advance of the FODO cell. This condition is independent of whether we use a 

doublet or a triplet for the betatron-parameter matching. In the example discussed 

in Sec. II, it is preferable to use a doublet matching section. Figure 27 shows the 

required phase advance in the matching section as a function of phase advance p 

of the FODO cell for various values of < = D,/DF. The total phase advance of 

the whole basic module is then given by 2(~ + $), which is a function of only the 

desired dispersion function at marker M, and the phase advance IL in the FODO cell. 

Figure 28 shows the total phase advance of the whole module as a function of the 

phase advance of the FODO cell for C = -0.3 to -0.6. 

Quadrupoles QF] and Qo, in the matching sect& are then adjusted to achieve 

the required phase advance li, given by Eq. (AS). A 1 ow betatron amplitude function 

at marker MC is desired so that DC will be small. Care should also be taken in the 

arrangement and choices of quadrupoles QF, and QD, in order to achieve reasonably 

small vertical Courant-Snyder parameters. Then, the matching becomes relatively 

simple as was demonstrated in Sec. II B. 

From the beam dynamics point of view, a basic module with a phase advance of 

!r is preferable due to the cancellation in the systematic half-integer stopband and 

the sextupole distortion functions. To achieve a $r phase advance, C x -0.3 N -0.4 

and a phase advance per FODO cell of ~1 = GO” to 75” call be used. With a less 

negative C value, however, the T* value will have larger imaginary value. Careful 

design and compromise can be achieved as was shown in Sec. III. 

The dispersion values at the midpoints of dipoles in the FODO cell are given by 

Dfl,=Do(l-isin$p), D&=Da(l-~sili~~I)+(D~-Da)sinZ~p. 

In the thin-element approximation, the momentum compaction becomes 

a= -& c (DB~ + DB~)~', 
m modules 

(Al'3 

where 0 is the bending angle of each dipole and L,,, is the length of the half-module. 

In comparison with the momentum compaction factor of a lattice made from conveo- 

tional FODO cells, we obtain 
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cy 
- = g 
%mJ ‘n 1 

c+(l-l),(, y;$p)] t 
2 

Note here that the momentum compaction factor is a linear function of the initial 

dispersion function if the module length is a constant. Although the thin-lens ap- 

proximation has been used for the quadrupoles and dipoles, it is easy to see that this 

linear relationship is exact even for thick elements. If the horizontal phase advance 

pz of the FODO cell is different from its vertical phase advance py, Eqs. (A9) and 

(AIO) still hold when the replacements, 

21 2, sin ~p+sm ?pz , 

!jsin$p+i(s-+j/z) , (Al‘4 

are made, where s+ = sinZ~~z*sinZ~~y. This linear relationship was demonstrated 

in Fig. 3 using the examples of Table I and Fig. 2. For those cases, the horizontal and 

vertical phase advances for the FODO cells are, respectively, 65.16” and 106.20”. The 

momentum compaction factor of the module becomes zero or the module isochronous 

at < = -0.261. However, this occurs actually at C = -0.35 instead according to 

Fig. 3. The discrepancy is due to the positive contribution of the extra dipole in the 

low-beta matching section of the module. 

The above analysis can be applied also to a DOFO cell discussed in our previous 

study [7]. In the case with DOFO cells, the variables with the subscript F in Eqs. (Al) 

to (A4) should be replaced with the values at the defocusing quadrupole. In fact, Jn 

is slightly larger than JF. A slightly larger C has to be used in order to minimize the 

magnitude of the dispersion function in the module, because the dispersion value at 

the defocusing quadrupole location is smaller than that at the focusing quadrupole 

location. From Fig. 27, we observe therefore that a larger phase advance should be 

used in the matching section, where a triplet should be used. It becomes harder, 

however, to achieve the condition of $T phase advance in the basic module. 

For some economical reason, one may try to use DOFODO in place of the FODO 

cell in Eq. (Al), i.e., three FODO cells instead of two are placed inside a basic module. 

The betatron transfer matrix in the DOFODO cell becomes 

M a+* = 

Fsin!p Dp-D~Ecos !p 

k?Q pF cm ;P * siIl$ > (A13) 

0 1 



where IL is the phase advance of a FODO cell, /3~, ,BD, Dp, DD are, respectively, 

betatron amplitudes and dispersiou values at the focusing and defocusing quadrupoles 

of the FODO cell. Similar analysis as sl~ow~~ in this appendix can be repeated easily. 

The result will be a larger total dispersion value with less favorable phase advance 

for the module. 
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TABLES 

TABLE I. Variation of yt as a function of Dl,,i,, showing modules with FODO Cells of 

fixed tunes: v,=O.lSl, r/,=0.295. 

-Yt UC “Y &w. [ml &in [lnl 

i23.275 0.83579 0.93727 0.81343 -2.50000 

i26.935 0.81710 0.85538 0.77439 -2.00000 

i35.039 0.79452 0.76733 0.77516 -1.50000 

i80.440 0.76767 0.80456 0.98849 -1.00000 

i461.607 0.76033 0.81404 1.03838 -0.88000 

iG71.104 0.76021 0.81421 1.03923 -0.87800 

i789.9GG 0.76018 0.81425 1.03944 -0.87750 

i1007.845 0.76014 0.81429 1.03965 -0.87700 

816.158 0.76002 0.87500 1.04071 -0.87500 

502.835 0.75989 0.87300 1.04131 -0.87300 

2G8.897 0.75939 0.81531 1.04472 -0.86500 

120.311 0.75652 0.81882 1.06317 -0.82000 

80.518 0.75196 0.82604 1.09472 -0.75000 

47.123 0.73448 0.84777 1.19941 -0.50000 

36.859 0.71503 0.87015 1.29385 -0.25000 

25.266 0.64343 0.92643 1.62542 0.42900 

21.574 0.58485 0.93472 1.83G55 0.66500 

18.841 0.52070 0.90784 2.04859 0.87400 

15.885 0.42758 0.89983 2.67670 1.17600 

7t 

TABLE II. Modules with FODO Cells of v,=O.142, v,=O.135. 

vz uv D ,nax iml DIni” hl 

i57.309 0.71G96 0.33830 0.81914 -0.81500 
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Yt 

i67.121 

T.4BLE III. Modules with FODO Cells of v, = 0.147, v+, = 0.2155. 

vz % Dmax [ml Dmin [ml 

0.71993 0.38893 0.77117 -0.79000 

TABLE IV. Courant-Snyder parameters of a module with just 3 FODO cells in a row. 

Yt us “Y 0, [I111 &,ax [lnl Quiz, [ml v,/cell v,/cell 

13.754 0.54310 0.88502 52.825 2.52916 1.28890 0.181 0.295 

18.734 0.75000 0.75600 45.949 1.42843 0.69000 0.250 0.252 

TABLE V. Off-momentum Properties of the imaginary 7t lattice. 

1.5% -1.5% 

AdiZlvG% PI 8.23 5.96 

Av’Wd& PI 11.94 7.01 

AD/D (D > O)[%] -6.57 11.20 

AD/D (D < O)[%] 17.20 22.40 

~co,,na, [mm] 45.40 42.50 

h+in [ml~~] -46.80 -43.30 

71 i26.44 i33.91 

A& 0.0081 0.0577 

Al/y 0.0476 0.0450 

TABLE VI. Comparison of dispersion of FODO Lattices with imaginary -yt lattices. 

Yt vz “Y Dnlax [ml kin [ml 

11.54 0.250 0.252 3.800 1.825 

i28.65 0.161 0.157 2.060 -2.700 

21.59 0.250 0.252 1.978 1.171 

i5G.i 0.165 0.180 1.180 -1.259 
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TABLE VII. Phases advances for the three modules. 

&z/2r 2&iJ2~ 

BASIC 0.7524 0.7603 

EXTRl 0.7391 0.7163 

EXTR2 0.7450 0.7334 
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FIG. 1. Normalized horizontal dispersion function in the basic 

module of the imaginary yt lattice. 
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FIG. 2. Dependence of the it values on the ~mi,, of the basic imaginary-y, module with 

the same FODO cells presented in the normalized horizontal dispersion-function space. 
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FIG. 3. Plot of momentum compaction factor a,s a function of minimum dispersion for 

the modules discussed in Table I and Fig. 2. The dotted line is the linear 

relationship predicted analytically by Eq. (AlO) in the appendix with 

the dipole in the low-beta matching section omitted. 
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FIG. 4. Normalized dispersion c-x plots for modules with FODO cells 

of different phase advances. 
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FIG. 5. Horizontal closed orbits of off-momentum particles in the basic 

block of the imaginary -yt lattice. 
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FIG. 6. Betatron functions and dispersion function within the basic 

module of the imaginary yt lattice. 
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FIG. 7. Betatron functions and dispersion function within the injection 

and extraction module of the imaginary 7t lattice. 
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FIG. 8. Normalized dispersion E-x plot for the zero-dispersion straight section 
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FIG. 9. Betatron functions and dispersion function within the module with dispersion-free 

straight section of the imaginary yt lattice. 
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FIG. 10. Dependences of maximum betatron functions on momentum 
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FIG. 11. Dependence of the nw&nnn horizontal dispersion change on momentwn. 
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FIG. 12. Contribution to B1 of the 5 sextupoles in the first BASIC module in the 

12.module xxv. The sum is represented by the darker arrow with its magnitude. 
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FIG. 13. Plot of distortion function B1 as a function of phase advance &/2x for 

half the ring starting from the center of an rf straight. 
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FIG. 14. Contribution to l?l of the 5 sextupoles in the first BASIC module in the 

12.module row. The sum is represented by the darker arrow with its magnitude. 
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FIG. 15. Plot of distortion function I? as a function of phase advance &/2~ for 

half the ring starting from the center of an rf straight. 
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FIG. 16. Contribution to B3 of the 5 sextupoles in the first BASIC module in the 

12.module row. The sum is represented by the darker arrow with its magnitude. 
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FIG. 17. Plot of distortion function Es as a function of phase advance &/2~ for 

half the ring starting from the center of an rf straight. 

55 



FIG. 18. Contribution to B+ of the 5 sextupoles in the first BASIC module in the 

12-module row. The sum is represented by the darker arrow with its magnitude. 
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FIG. 19. Plot of distortion function B+ as a function of phase advance 

$+/2~ = (2& + 1/1,)/2r for half the ring starting from the center of an rf straight. 
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FIG. 20. Contribution to B- of the 5 sextupoles in the first BASIC nmdule in the 

12-module row. The sum is represented by the darker arrow with its magnitude. 
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FIG. 21. Plot of distortion function B+ as a function of phase advance 

I+!-/2?r = (2& - T/-)/2a for half the ring starting from the center of an rf straight. 
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FIG. 23. Betatron-function (a and Ji7;) dependences on the vertical tune, the 

horizontal tune being kept constant. 
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FIG. 24. Dynamical apertures obtained from tracking 35000 turns at the injection energy 

8.9 GeV at momentum offsets 0.2% and 1.0%. The required aperture is 4,077 nun-mr. 
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FIG. 25. Dynamical apertures obtained from tracking 35000 turns at the 19 GeV at 

momentum offsets 0.2% and 1.0% when the magnetic field in the dipoles produces the 

maximum eddy currents. 
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FIG. 26. Ratio of dispersion actions Jb/JF as a function of C = D,/DF for various phase 

advances p in the FODO cell. 
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FIG. 27. Phase advance in the matching section as a function of phase a~dvance p in the 

FODO cell for various C = D,/DF. 
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FIG. 28. Total phase advance of the whole module as a function of phase advance /J in the 

FODO cell for various C = D,/DF. 
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